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Fig. 3 Local power dissipation for the array focused at p=p,=05¢ as a
function of the azimuthal coordinate for p = 0.5 a, where the 4, B, and C
curves correspond to N = 4, 8, 16, respectively (Note that curve C does not
show the details of the ripples, see text.)

Using the values of §, indicated above, the normalized local
power P is shown plotted in Fig. 2 as a function of the normal-
ized radial distance p/a for ¢ = 0° for the three cases N =4, §,
16. As indicated, there is a significant enhancement of the power
dissipation in the region of the focus point p;/a = 0.5. Further-
more, the focus is most pronounced for the case of N=16. To
give some idea of the azimuthal variation of the power levels, P
is plotted in Fig. 3 for the same condition, as a function of the
angle ¢, and for fixed p/a = 0.5. Here, we see rather dramati-
cally that there are noticeable secondary “hot spots” for the
N =4 case at the 90° points. On the other hand, for the N =8
and N =16 cases, the secondary maxima do not appear. Not
surprisingly, we see that the ripples in the azimuthal variation
become greater in number as N increases. (Actually this detail is
not evident in Fig. 3 for the N =16 case because of computa-
tional limitations.)

IV. CONCLUDING REMARKS

The limitations for controlling the local power dissipation in a
cylindrical target are rather severe. We have attempted to il-
lustrate the problem with a two-dimensional model consisting of
a concentric aperture array system with a prescribed form of
excitation. It is confirmed that some power enhancement takes
place at the focus point, but care must be taken to account for
secondary foci where additional “hot spots” may occur. The
latter will occur when the number of aperture clements in the
array are insufficient and /or the electrical size of the cylinder is
large, such that significant phase interference occurs between the
individual aperture contributions at other than the desired focus
point. Further investigations that deal with the aperture design
problem are underway. One possible scheme is to modify the
relative amplitude factors A, of the individual apertures to
reduce the spurious “hot spots,” but care must be taken not to
accomplish this at the expense of greater heating of the peripheral
regions of the target. It would also be useful to extend the present
numerical scheme to three-dimensional models (i.e., the axially-
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bounded aperture for layered cylindrical models) such as treated
by Ho, Guy, Sigelmann, and Lehman [3]. These investigators,
however, did not explicitly consider focusing.
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Numerical Analysis of Various Configurations
of Slab Lines

GIOVANNI B. STRACCA, GIUSEPPE MACCHIARELLA,
AND MARCO POLITI

Abstract —Numerical solutions are presented for the characteristic im-
pedance of various line structures derived from the slab line, which allow
the calculation also of the even and odd impedance of coupled slab lines.
Some approximated formulas are also derived, which match the numerical
results with good precision for a large range of geometrical dimensions of
the structures.

The results presented here are compared with some formulas and
numerical results available from previous technical papers.

I. INTRODUCTION

In this paper, both numerical solutions and analytical inter-
polating formulas are presented for the characteristic impedance
of the various transmission-line structures shown in Fig. 1. The
structure in Fig. 1(a) is the well-known slab line, which is
composed of a cylindrical metallic rod of diameter d, placed
symmetrically between two parallel ground planes A4’ and BB’
at a distance 4. The structure of Fig. 1(b), known as the trough
line, and that of Fig. 1(c) are derived from the slab line by
introducing in Section CD an electric conductor plane (short
circuit) (Fig. 1(b)) or a magnetic conductor plane (open circuit)
(Fig. 1(c)), orthogonal to the ground planes and at a distance ¢/2
from the center of the rod.

The characteristic impedance of the structure of Fig. 1(b) is
equal to the odd characteristic impedance Z,, of two-coupled
equal slab lines (Fig. 2), separated by a distance ¢; in addition,
the characteristic impedance of the structure in Fig. 1(c) is also
equal to the even characteristic impedance Z , of the structure in
Fig. 2. Both characteristic impedances of the two transmission
lines of Fig. 1(b) and (c) approach the characteristic impedance
Z_ of the slab line, when the distance ¢/2 is very large.
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Fig. 2. Coupled slab lines.

The characteristic impedances of the various slab lines of Fig. 1
have been obtained by numerically evaluating the static capaci-
tance per unit length of these structures: the moments method
with a point-matching technique has been employed for the
solution of the problem. Interpolating expressions have been
further obtained, which give the characteristic impedances with a
good approximation, as functions of the geometrical dimensions
of the transmission lines. From the results presented here, either
in their numerical form or, more easily, by means of the analyti-
cal formulas, it is possible to perform calculations for all the
structures composed by slab lines (for example, directional cou-
plers, and comb and interdigital filters [1]).

Finally, some comparisons are discussed between the results
presented in the paper and the data available in the literature; in
particular, the works of Chilshom {2] and Cristal [3] have been
considered (the computed data required to be suitably trans-
formed, as explained in Section V, in order to refer to the
slab-line structures of Fig. 3).

II. EVALUATION OF THE CHARACTERISTIC IMPEDANCES OF
THE SLAB-LINE STRUCTURES

The evaluation of the characteristic impedance of a TEM mode
in a lossless uniform transmission line can be reduced to that of a
dc capacitance per unit length C between the two conductors of
the line.

In fact, Z, depends on C through the relationship

z-2= ¢ 1
(2 \/Z C ( )

where ¢, is the relative permittivity of the propagation medium,

and Z_ =y/po/€q =376.73 Q is the free-space wave impedance.

The static capacitance per unit length C of a transmission line
is equal to the total electric charge per unit length Q0 on one of
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Fig 3. Slab-line structures considered n [3]

the two conductors, when a potential difference V=1 is applied
between the two conductors. To perform this computation
numerically, the inner cylindrical conductor has been replaced
with a finite number N of line charges ¢, (with j=1 to N)
placed on a circle of radius r < d /2, inside the inner cylindrical
conductor; the values of the charges g, —the sum of which
Q=X g, represents the solution of the problem—can then be
obtained by imposing a constant potential at several points on
the surface of radius d /2, corresponding to the surface of the
inner conductor; in particular, if the number of points is the same
as the line charges, a point-matching solution of the problem can
be obtained, with a precision depending on the number N of line
charges g, considered.

To take into account the boundary conditions imposed by
electric or magnetic planes in the two structures of Fig. 1(b) and
(c), the images method has been used, replacing the electric and
magnetic planes with an infinite set of image charges. The struc-
ture of Fig. 1(a) can be seen as a particular case of Fig. 1(b) and
(c) structures, when the distance ¢/2 becomes very large.

Two kinds of errors are unavoidably introduced evaluating Z ,
Z,,, and Z, , numerically, according to the present method. The
first one arises from the finite number of images that can be
taken into account; the second one is due to the finite number N
of discrete line charges that approximate the actual continuous
charge distribution on the surface of the inner conductor. As a
consequence of the finite number N, the potential ¥ is constant
only at the N points and not on the whole surface.

The first kind of error becomes in practice very small if only a
few tens of images are considered; however, this summation
continues in the computer program as long as the relative contri-
bution of the following term becomes less than 1074,

In order to reduce the second kind of error, the number N of
line charges on the circle of radius r was chosen large enough
(e.g., typically 32). Moreover, for each d/h ratio, the value of
r/d, which gives the minimum deviation AV from V' =1 of the
potential in the middle of two observation points on the surface
of the cylindrical rod, was employed. This deviation AV was
found to be better than 5 10~¢ for d/h<09 and N=32; AV
remains better than 3.7 1074 up to d/k =0.99 when N = 64.
The value of the optimum r/d decreases from 0.375 when
d/h=0.1 to 028 when d/h=0.9, with N =32. It increases to
0.42 when d/h=0.99 if N=64. However, it must be noticed
that the influence of both r/d and N (the number of line
charges) on the computed values of Z_is not very critical when
N is sufficiently large (at least 16). For instance, the variation
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TABLE I
CoMPUTED VALUES OF THE ODD CHARACTERISTIC IMPEDANCE

(Fig. 1(b))
d/h = 0.10 0.20 ©0.30 0.35 0.40 0.50 ©0.60 0.70 0.80 ©.90
c/2n
0.10 77 .50 - - - - - - - - -
0.15 101.89 65.23 - - - - - - -
0.20 116.86 73.26 44.12 29.66 - - - - - -
0.25 126.986 84.46 S58.20 47.31 36.79 - - - - -
0.30 134.05 ©92.03 66.81 656.88 47.94 31.18 - - - -
0.35 139.12 97.31 72.57 63.01 54.59 39.95 26.44 - - -
0.40 142.77 101.09 76.55 67.16 58.95 45,02 33.17 22.06 - -
0.50 147.35 105.76 81.37 72.08 64.01 50.45 39.24 29.56 20.83 12.42
0.60 149.77 108.21 B83.86 74.56 66.53 53.02 41.84 32.17 23.40 14.78
0.76 151.08 109.51 B85.17 75.89 67.83 54.30 43,09 33.34 24.41 15.46
0.80 161.76 110.19 85.85 76.58 68.52 54.98 43.72 33.90 24.86 15.72
0.90 152.12 110.56 66.22 76.94 68.88 655.32 44.05 34.20 25.10 15.90
1.00 152.32 110.74 86.41 77.13 69.08 55.50 44.22 34.35 25.22 15.95
1.560 152.53 110.87 86.62 77.34 69.29 55.70 44.41 34.51 25.34 16.03
2.00 152.53 110.98 86.63 77.35 69.30 55.72 44.42 34.52 25.34 16.03
- 152.54 110.98 86.63 77.35 69.30 55.72 44.42 34.52 25.34 16.03

TABLE II

COMPUTED VALUES OF THE EVEN CHARACTERISTIC IMPEDANCE

(Fig. 1(0))
d/h = 0.18 0.z20 0.30 0.35 0.40 0.50 0.60 0.70 0.80 0.90
c/2h
0.10 220.68 - - - - - - - - -
0.15 200.63 155.34 - - - - - - - -
0.20 187.06 143.73 116.39 105.25 - - - - - -
0.25 177.56 135.08 109.10 98.71 89.37 - - - - -
0.30 170.76 128.69 103.46 93.53 84.68 69.13 - - - -
0.35 165.83 124.01 99.16 89.49 80.96 66.10 653,12 - - -
0.40 162.25 120.53 95.91 66.33 78.04 63.66 51.21 39.83 - -
0.50 187.72 116.11 91.67 82.30 74.13 60.22 48.41 37.76 27.61 17.19
0.60 155.31 113.73 89.34 80.03 71.92 68.21 46.66 36.39 26.71 16.74
.70 154.03 112.44 88.10 78.79 70.71 57.07 45.65 35.87 26.12 16.46
0.80 153.34 111.76 87.42 78.13 70.056 66.44 45.09 35.09 25.78 16.28
0.90 152.96 111.41 87.05 77.77 69.70 56.11 44.78 34.83 25.59 16.16
1.00 152.78 111.20 86.85 77.57 68.51 55.92 44.61 34.69 25.48 16.11
1.60 152.57 110.99 86.64 77.36 69.30 55.72 44.43 34.53 25.36 16.04
2.00 152.54 110.99 86.63 77.35 69.29 655.72 44.42 34.52 25.35 16.02
[ 152.54 110.98 86.63 77.35 69.30 55.72 44.42 34.52 25.34 16.03

obtained in Z, varying N from 32 to 64 was above a few percent
only for d/h = 0.99, although the AV error with N =32 was in
this case not very small (AV =1.43 1072).

IIL

The results of the computations of Z, (Fig. 1(a)), Z , (Fig.
1(b)) and of Z, , (Fig. 1(c)) are presented in Table I (Z,,) and in
Table II (Z,,) for several values of d/h and c/h. The value of
Z, is given as that of Z , and Z_, in case of ¢/h = o0. For three
value of d/h (0.1,0.5,0.9), the computed values of Z., and Z,_,
are also reported in graphical form in Fig. 4.

RESULTS OF THE NUMERICAL COMPUTATIONS

IV. ANALYTICAL APPROXIMATIONS FOR Z-, Zr-o, Zcg

It is possible to derive, from the numerical results, analytical
interpolating formulas for Z,, Z,,, and Z,,, and Z,,.

The formulas presented here have been derived by slightly
modifying the following well-known approximated expression of

the characteristic impedance of the slab line [4]:

ZOO
Z,=—n
27

7rd4/h ) @

where Z is the wave impedance of the propagation medium.
Equation (2) is a good approximation for small values of 4/h
( < 0.3). A correcting coefficient F, which depends on d/h, has
been introduced in this equation for a better match with the

numerical values of Z,, obtained for greater values of 4/h

Z, 4

Z. = S In ——d—; 3)
—
h

The following expression for F has proved to be satisfactory

up to d/h < 0.95
d
16(;;—-1.142)”. 4

The precision of the interpolating formulas (3) and (4) is better
than 0.01 percent for d/h< 0.9, assuming as reference the
computed values of Z , and grows to 2.2 percent for d /h = 0.95.

Expressions similar to (3) also can be employed for the char-
acteristic impedance of the structures in Fig. 1(b) and (c) intro-
ducing two additional correcting coefficients F, and F,

Z, d

~—1In{ 4[| #—FF,

2 h
Z, d

Z.,=-—1In|4/|n-FF,
2 h

where F is given again by (4). The new coefficients F, and F,,

d 4 1/2
F= 1—(—};) 5.905 [1+E:Xp

V4

co

(5)

(6)
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which depend in general both on ¢/h and d /h, can be given by
the following expressions, obtained from the approximated for-
mulas for Z,, and Z , reported in [5], [6] by introducing the
correcting coefficients M, and M :

E =M, coth(mc/2h)
E =M, tanh(wc/2h).

(7
(8)
The factors M, and M, are very close to 1 and can be
evaluated from the computed values of Z,, and Z, ; therefore,
suitable interpolating expressions have been found, which give
the min—max error between the computed impedances and those
obtained from the formulas (5)—(8)
M, =1+exp [(alx2 +a,x+ a3)y] —exp [(a4x2 +asx+ aé)y]
)
M,=1-+exp [(b1x2 +byx + b3)y] —exp [(b4x2 + bsx + bé)y]
(10)
where x=d/h and y=(c—d)/d=s/d; the coefficients a,
and b, are given by

ay=—1.8861 b, =3.0989
4, =14177 b, =—8.2997
ay= 55142 b, = —3.0843
a,=—27030 b, =4.0797
a;=4.6772  by=—2.1808
ag=—8.5900 b, = —8.5534

The maximum percent error between the computed and the
interpolated values of the impedances is 1.4 percent for Z,, and
3.2 percent for Z_,, for d/h < 0.9 and for s/d > 0.3. In Fig. 4,
both interpolated and computed values of Z,, and Z. are
reported as functions of s/h, for some values of d/h. It can be
seen from the figure that the largest deviations between computed
and interpolated impedances occur for large values of d/h(d/h
> (.5).

V. COMPARISON BETWEEN NUMERICAL CALCULATIONS
AND AVAILABLE RESULTS

A. Comparison with the Results Given in [2]

In [2], Chisholm has employed a variational method to com-
pute the characteristic impedances of the structures in Fig. 1(a)
and (b); however, only three values of ¢/h were considered in
[2]. The comparison with the impedance values here computed
for ¢/h =10.5,1, and 1.5 shows that the difference is smaller than
1 percent for d /h < 0.6, but grows to 2.5 percent for Z, and to
6.5 percent for Z , for d/h =09, ie., for the larger values of
d /h, where the procedure employed in [2] is no longer satisfac-
tory. In addition, no results were given in [2] for the structure of
Fig. 1(c) (i.e, for Z ).

B. Transformation of the Formulas Given in [3]

The formulas obtained by Cristal in [3] refer to the structures
of Fig. 3(a) and (b) and cannot be used directly for the structures
of Fig. 1. However, it is possible to arrange a suitable transforma-
tion in order to apply these formulas to the structures in Fig. 1(b)
and (c).

In fact, for the structures of Fig. 3(a) and (b), it is possible to
divide the total capacitance per unit length C, of Fig. 1(b)
structure into two parts C, and C,, where C, is the capacitance
considered in Fig. 1(c) and C, the capacitance towards the

4 Ze 1
L= n
“ 277‘/2 d\*
1_ -
(=)
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Fig 4 Computed (stars and ponts) and interpolated (continuous lines) val-
ues for the even and odd impedances of coupled slab lines

short-circuit plane CD. Furthermore, C, may be divided into two
parts: C, and C,. C, is the capacitance considered in Fig. 3(b)
and C_ the residual capacitance.

It is possible, therefore, to write the total capacitance of the
structure in Fig. 3(a) as C, +2C; and that of the structure in Fig.
1(c) as ¢, + . The relationship between the characteristic ad-
mittances Y. Y, and Y, of the three structures shown in Fig. 1
and the characteristic admittances ¥/, and Y/, of the two struc-
tures shown in Figs. 3(a) and (b) is given by the following:

Yo=(/2)(Y.+Y,) (11)

Y, =(1/2(Y,+Y,). (12)

The admittances Y/, and Y/, can be obtained either from the
capacitances C, and C,, computed numerically in [3], or from the

approximated analytical expressions obtained by replacing the
rod with an infinitesimal line charge located at the axis of the rod

(3]
(dm/4h)

)

+2fm(—1)mln<tanh(mg %)} (13)

1

’

Z

r o0

Ze 277‘/;

(d7r/4h)|1—(d/2c)4!l/2
In RC
t-(35)

o0

+2Zmln{tanh(m§ %)} . (19

1
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Fig. 5. Comparison between C,/(2¢) as computed in [3] (continuous line)

and the computed values here obtained (stars).
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Fig. 6. Comparison between C,, /e as computed in [3] (continuous line) and
the computed values here obtained (stars).

Notice that the above expressions give a satisfactory approxi-
mation of the actual admittances (maximum percent error less
than 1 percent [3]) only for d/h < 0.3 and s/d > 2, which are
quite below the limits on d/h and s/d considered in the
interpolating formulas given in this paper.

C. Comparison with the Numerical Results Given in [3]

Figs 2 and 3 in [3] show the numerical results obtained by
Cristal for the structures in Fig. 3(a) and (b), as static capaci-
tances C, /€ and C,, /¢, where G, =1/2C,.

For the purpose of comparison, the numerical results obtained
here have been transformed into the same form given by Cristal.
With the same procedure adopted in Section V-B, we obtain from

11) and (12
(11) and (12) (15)

(16)

¥,=2Y,-Y,
Y,=2Y, - Y.
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As a consequence, the Cristal’s parameters C, /¢ and C,, /¢

may be written as a function of Y., ¥,,, and ¥,
C,/e=2Z, (2, - ¥)) (17)
Cm/€=Zoo(Yto_Y:‘e)/2~ (18)

The graphs of [3] for %Cg /¢ and C,, /€ are shown in Figs. 5
and 6 together with some points representing the numerical
results obtained in this work, transformed for the structure of
Fig. 3 by means of (17) and (18). The figures show a very good
agreement between the results obtained with the numerical
method followed in this paper and those given by Cristal.

VI. CONCLUSION

A numerical evaluation of the characteristic impedance of slab
line and of two derived transmission lines has been presented.
The results obtained in the case of these two structures also
represent the even and odd characteristic impedance of two
coupled slab lines.

The results obtained show a very good agreement when com-
pared with the few available data in the literature. An extensive
comparison of the computed values has been made, in particular
with the data presented by Chisholm [2] and Cristal [3]. In
addition, the overall accuracy of the numerical method employed
has been estimated and seems better than 1 percent for the
computed values of the characteristic impedance of all the trans-
mission lines considered, when d/h < 0.9 and s/d > 0.1.

Closed-form expressions for the characteristic impedances con-
sidered here have also been presented, and were obtained by
interpolating the numerical values. The precision of these expres-
sions, if compared with the numerical values, is better than 1
percent for the characteristic impedance of the slab line and
about 1.5 and 3 percent for even and odd characteristic imped-
ance of coupled slab lines, respectively.
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New

Shunt-Connected Microstrip Radial Stubs

F. GIANNINI, sENIOR MEMBER, IEEE, M. RUGGIERI,
AND J. VRBA

Abstract —Radial-line stubs provide an interesting alternative to low-im-
pedance conventional straight stubs. They are useful as filter elements in
both series and shunt configurations. In this short paper, the planar circuit
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